Gabidulin Codes that are Generalized Reed Solomon Codes
نویسندگان
چکیده
In this paper, we describe permutations that allow to move from a Gabidulin code to a GENERALIZED REED SOLOMON code. Mathematics Subject Classification: 11T71
منابع مشابه
A general construction of Reed-Solomon codes based on generalized discrete Fourier transform
In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes enjoy nice algebraic properties just as the classic one.
متن کاملSkew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring
Reed-Solomon codes and Gabidulin codes have maximum Hamming distance and maximum rank distance, respectively. A general construction using skew polynomials, called skew Reed-Solomon codes, has already been introduced in the literature. In this work, we introduce a linearized version of such codes, called linearized Reed-Solomon codes. We prove that they have maximum sum-rank distance. Such dist...
متن کاملOn Transform–domain Decoding of Gabidulin Codes
Gabidulin codes are the rank metric analogues of Reed–Solomon codes and found many applications including network coding. Interleaving or the direct sum of Gabidulin codes allows both decreasing the redundancy and increasing the error correcting capability for network coding. In this paper, for Gabidulin codes we propose a transform–domain algorithm correcting both errors and erasures. We show ...
متن کاملLinear codes using skew polynomials with automorphisms and derivations
In this work the definition of codes as modules over skew polynomial rings of automorphism type is generalized to skew polynomial rings, whose multiplication is defined using an automorphism and a derivation. This produces a more general class of codes which, in some cases, produce better distance bounds than module skew codes constructed only with an automorphism. Extending the approach of Gab...
متن کاملDecoding of Block and Convolutional Codes in Rank Metric DISSERTATION
Rank-metric codes recently attract a lot of attention due to their possible application to network coding, cryptography, space-time coding and distributed storage. An optimal-cardinality algebraic code construction in rank metric was introduced some decades ago by Delsarte, Gabidulin and Roth. This Reed–Solomon-like code class is based on the evaluation of linearized polynomials and is nowadays...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009